
ESCAPE v1.1 Manual

Peter Verplaetse

Department of Electronics and Information Systems

University of Ghent, Belgium

peter.verplaetse@elis.rug.ac.be

1 Introduction

ESCAPE is an easy-to-use, highly interactive portable PC-based simulation environment aimed at the support
of computer architecture education. The environment can simulate both a microprogrammed architecture and
a pipelined architecture with simple pipeline. Both architectures are custom-made, with a certain amount of
con�gurability. Other tools, such as a memory monitor, assembler/disassembler and analysis tools, such as
on-the-y generation of pipeline activity and usage diagrams, are integrated with the environment.

2 Running ESCAPE

The required executables can be downloaded from http://www.elis.rug.ac.be/pvrplaet/~download.html.
Some windows might look corrupt when using large or custom size fonts { we recommend to use small fonts.

2.1 Windows 3.x

Use the 16-bit version of ESCAPE if you are using a Windows 3.x operating system. The 16-bit version is not
100% stand-alone. When no other Borland software is installed on your system, a few �les from the Borland
Runtime Library may be required for the program to run properly. If you get the following error message after
launching escape16.exe:

An error occurred while attempting to initialize the Borland Database Engine (error $2108)

you need to place the following �les in the same directory as escape16.exe:

Idapi01.dll

Ild01.dll

These �les can be downloaded from http://www.elis.rug.ac.be/~pvrplaet/download.html as well.

2.2 Windows 98/95/NT

Use the 32-bit version of ESCAPE when using a 32-bit operating system such as Windows 98, Windows 95 or
Windows NT.

3 Architectural details

The instruction set architecture is inspired by Hennessy and Patterson's DLX. The three distinguished types
of instructions (I-type, R-type and J-type) are shown in �gure 1. Contrary to the DLX architecture the size of

1

Opcode

Opcode

Opcode

r1

r1

r2

r2 r3 r4

Immediate 1

Immediate 2

no

no

no

nr

nr nr nr nr

nr ni1

ni2

I-type instruction:

R-type instruction:

J-type instruction:

Figure 1: instruction encoding.

the bit�elds is not �xed, but depends on the maximum number of instructions and the size of the register �le.
All instructions have a 32-bit encoding, hence the length of the immediate �elds (ni1 and ni2) can be derived
from the bit�eld sizes of the opcode and formals (no and nr):

ni1 = 32� no � 2nr

ni2 = 32� no

R-type instructions can have up to 6 formals (assuming nr is suÆciently small). This can be useful for imple-
menting more advanced operations in the microprogrammed architecture, a popular homework assignment.

3.1 Microprogrammed architecture

The architecture consists of a control unit and a datapath, as can be seen in �gure 2. The datapath consists
of a register �le, two read registers (A, B) and a write register (C), a memory interface with address (MAR), data
(MDR) and instruction (IR) registers, a program counter (PC), a number of extra registers (typically IAR and a
few temporary registers) and an ALU. The di�erent parts are connected by two input buses (S1 and S2) and a
result bus. The ALU can perform a number of basic operations in a single cycle, as shown in table 1. A built-in
comparator does zero and sign detection on the result.

Operation Result Note

ADD S1 + S2 add
SUB S1� S2 subtract
RSUB S2� S1 reverse subtract
MUL S1� S2 multiply
DIV S1� S2 divide
AND S1 & S2 bitwise and
OR S1 j S2 bitwise or
XOR S1 ^ S2 bitwise exclusive or
SLL S1 << S2 shift left
SRL S1 >> S2 shift right
SRA S1 >>a S2 shift right arithmetic
S1 S1 pass S1
S2 S2 pass S2
S2S1 S2[15 : 0] << 16 + S1[15 : 0] for LIH instruction

Table 1: basic ALU operations.

The memory interface can load and store bytes, halves (16 bit) or words (32 bit), with adjustable access time.
Both instructions and data are stored in the same memory (von Neumann architecture).

The control unit is microprogrammed. The microcode address is kept in a special register (uAR). During each
cycle uAR is either incremented or replaced with a new value (i.e. a jump to a new microinstruction). Typical

2

TMPn

PC

TMP1µAR

A
C

B

MAR

MDR

IR

Register
file

Micro-
code

Jump
tables

ALU

Address
Data

in
Data
out

+

S1 S2 Result

1

Control Unit Datapath

Processor

Memory

Sign
extend

Figure 2: microprogrammed architecture.

3

jump conditions are: memory busy, ALU output zero, ALU output negative and interrupt pending. The jump
address is either stored in the microcode, or read from a jump table (indexed by the opcode �eld in IR). The
latter is useful for instruction decoding. The number of jump tables is adjustable from 1 to 4.

3.2 Pipelined architecture

Both the control unit and the datapath are pipelined into the �ve traditional stages: IF (instruction fetch), ID
(instruction decode), EX (execute and e�ective address calculation), MEM (memory) and WB (write back), as
can be seen in �gure 3: Because there are at least three cycles between reading the register �le and write back,

PC PC1
MAR

SMDR

RES1

LMDR

RES2

COND

IR

A

B

Register
file

ALU

+
Address

Data
in

Data
out

Address

Data
out

Sign
extend

?

IR1 IR2 IR3

ST1 ST2 ST3

4
Data memory

Instruction
memory

Control Unit

Datapath

IF ID EX MEM WB

Figure 3: pipelined architecture.

a forwarding mechanism is implemented to prevent the pipe from unnecessary stalling. The register �le is read
in the ID stage, but written during the WB stage. Write through is explicit by the use of multiplexers.

The EX stage consists of an ALU and a comparator. The ALU can perform the same operations as the one
for the microprogrammed architecture. During the execution of a branch the comparator evaluates the branch
condition while the ALU calculates the e�ective address. Depending on the settings of the simulator the two
instructions following the branch can be executed (i.e., a double delay slot), nulli�ed (no delay slot), or only the
instruction in the IF stage is nulli�ed (single delay slot).

There are two separate memory interfaces: one for instructions and one for data (Harvard architecture). The
instruction memory access time is �xed (single cycle access); the data memory access time is adjustable from 1
to 9 clockcycles. Access to the data memory occurs during the MEM stage.

4 Form overview

The application consists of several forms or windows. The most important forms are:

� Main Form

� Con�guration Form

4

� Microprogrammed Architecture Form

� Microcode and Jump Tables Form

� Pipelined Architecture Form

� Pipeline Functionality Form

� Pipeline Diagrams

� Instruction Memory Form

� Data Memory Form

� Breakpoints Form

The forms will be discussed in more detail in the following sections. Most forms have menu's. By clicking on
the right mouse button, a pop-up menu appears from which most menu items can be selected as well.

5 Main Form

After launching the simulation environment the main form appears. On the right side of the form are three
buttons. By clicking on these buttons you can launch the simulator for the microprogrammed or the pipelined
architecture, or con�gure both architectures.

Click on the close icon of the window to exit the application. If the current con�guration has changed but has
not been saved yet, the user is asked to save the con�guration �rst.

6 Con�guration Form

The con�guration form can be used to con�gure both architectures. The con�guration is stored with '.ecf'
extension. When starting the environment, the application �rst looks for 'escape.ecf'. If this �le is not found,
it searches for any '*.ecf' �le. When such a �le is found, it is loaded as the default con�guration. If no �les
match, no default con�guration is loaded.

The con�guration form consists of 4 pages: general options, instruction encoding and two architecture speci�c
forms. You can switch from one page to another by clicking on the tabs on the bottom of the form.

6.1 General options

ALU Operations MULT and DIV operations can be disabled, since it is not realistic for those operations to
be executed in a single cycle.

Comparator Operations A minimal or complete set of comparator operations can be selected. The minimal
set consists of only two operations: equal and less than. The complete set consists of all 6 operations
(equal, not equal, less than, greater than, less than or equal and greater than or equal).

Sign Extend Sign extension can be done to bytes, halves or words, or to words only.

Memory Operations Memory operations can be done with byte, half and word resolution, or word only
resolution.

Memory Size The data memory size can be set from 64 to 32768 bytes. The code memory size (pipelined
architecture) or default code range (microprogrammed architecture) can be set from 64 to 32768 as well.

5

6.2 Instruction encoding

The number of opcodes can be set from 16 to 256. The number of registers in the register �le is con�gurable
from 4 to 256. Changing these two numbers inuences the size of the immediates and the number of formals
that can be used for R-type instructions.

For each instruction one must specify:

The Opcode Alphanumeric characters without spaces.

The Instruction Type R-, I- or J-type.

The Mnemonic Representation The textual representation of the operands. The formals r1-r6 will be
replaced by actuals (with capital R). Use 'i' or 'j' to represent immediates. Note that both 'i' and 'j'
can be used for both I-type and J-type instructions: with 'i' the immediate is represented as an absolute
integer; with 'j' the immediate is interpreted as a PC-relative address (relative to the address of the next
instruction) and labels are used when possible.

6.3 Microprogrammed architecture

Microcode Memory The microcode size can be set from 2 to 1024 lines. The width of the constant �eld is
con�gurable from 0 to 32 bits.

Register File Operations Specify which formals should be read in registers A and B during an RR operation.
Checkmark the additional operations that can be performed (RAF: read formal into A, RBF: read formal
into B, RAA: read actual into A, RBA: read actual into B, WF: write formal, WA: write actual).

Jump Tables Set the number of tables from 1 to 4

Extra Registers Enter the names of the extra organizational registers.

6.4 Pipelined architecture

Register File Reading Since instruction decoding is on the critical path and register �le accesses are slow as
well, it is not realistic when the formals to be read during the ID stage depend on the instruction that
gets decoded at the same time. When register �le reading is set to Instruction Independent, register A (B)
is always loaded with formal 1 (2).

Stall Control Stalling of the di�erent stages is controlled independently. This may appear strange to those who
are used to always having the pipe stalling upstream. Therefore, stall control can be set to Unconditionally
Stall Upstream to achieve the latter.

Since instruction decoding is on the critical path and register �le accesses are slow as well, it is not realistic
when the formals to be read during the ID stage depend on the instruction that gets decoded at the same
time. When register �le reading is set to Instruction Independent, register A (B) is always loaded with
formal 1 (2).

6.5 Menu items

File!New File Discard all settings.

File!Open File Read settings from a �le.

File!Save File Write the current settings to a �le. The user is prompted for a �le name when no name has
been speci�ed.

File!Save File As Similar to the previous menu, but the user is always prompted for a �le name.

6

File!Hide Form Hides the con�guration form and displays the main form again. The same can be achieved
by clicking on the window close icon.

Help!About Shows the about box.

7 Microprogrammed Architecture Form

The microprogrammed architecture form shows most organizational elements of this architecture. If not all
registers in the register �le are visible, click on the register �le to show a blinking cursor. Use the cursor keys to
walk through the registers. The position of the multiplexers and the bus sources are visualized by thick black
lines. Registers that have a gray background are disabled (and will keep their content during the next clock
cycle). Registers with a white background will be update during the next cycle.

By clicking on the wires that interconnect the di�erent elements a pop-up box appears that shows the driver
and current value of that wire.

On the right of the form are a few buttons and boxes to control the simulation. A click on the Reset button
results in initialization of the architecture. Click on the Clock button to simulate one or multiple clockcycles.
A click on the Rewind button will rewind the clock. Note that the clock can not be rewinded for more than
1024 cycles. If the multiple cycles box is checkmarked, the number of cycles speci�ed in the Cycles box will
be simulated or rewinded. You can also enter a new value in the Time box to simulate or rewind clockcycles.

When simulating more than one cycle, the simulation will be interrupted when a breakpoint condition is met
or when a memory access violation occurs.

7.1 Menu items

File!New Project Clear the memory and discard all settings

File!Open Project Load the settings from a �le. This will automatically load data and instruction memory
modules, and microcode. Since code and data memory are physically the same (von Neumann architec-
ture), part of the data memory is overwritten with the code memory. This allows the user to manually
edit the instruction memory �les.

File!Save Project Saves the settings to a �le. The instruction and data memorymodules, and the microcode
will be saved as well.

File!Save Project As Similar to the previous menu, but the user is prompted for a project �le name.

File!Set Trace File Before trace �le generation can be enabled (see the Options Generate Trace File

item), a trace �le must be set �rst. Warning: this will erase the selected trace �le.

File!Exit Exits the simulator and shows the main form again. The user is prompted to save the project if
necessary.

View!Instruction Memory Shows the instruction view of the main memory.

View!Data Memory Selecting this item shows the data view of the main memory.

View!Microcode By clicking on this item the microcode and jump tables form is displayed.

View!Breakpoints Click on this item to display the breakpoints form.

Options!Generate Trace File After setting a trace �le (with File!Set Trace File) this menu item be-
comes enabled. Click on it to generate a trace �le while simulating. Each time the PC register is changed,
a new line is added to the trace �le. This may not work properly with self-modifying code. By clicking
on the Options!Generate Trace File item again, the checkmark is removed and trace �le generation
is disabled.

7

Options!Enable Rewind To speed up simulation the rewind option can be disabled. It can be enabled at
any time { the Rewind button will be enabled as soon as you simulate more clock cycles.

Options!Memory Access Time Select this item to set the memory access time to a value from 1 to 9
cycles. The default value is 4 cycles.

Help!About Shows the about box.

8 Microcode and Jump Tables Form

This form can be used to de�ne the functionality of the microprogrammed architectures. The form consists of
2 pages: a Microcode page and a Jump Tables page. You can switch from one page to another by clicking
on the tabs on the bottom of the form, or by clicking on one of the View menu items.

8.1 Microcode

The microcode is represented as a table. Each row of the table corresponds to a microinstruction. Each row in
this table has to be seen as a set of parallel instructions at the microcode level, and consists of the following
items:

uAR This is the microcode address.

Label Since the microcode address can change when inserting or deleting rows, labels are used to specify jump
addresses in the microcode. Enter a label (alphanumeric sequence without whitespace) here to identify
the microinstruction.

ALU The functionality of the ALU when executing this microcode instruction. Possible values are: (empty {
no operation), ADD, SUB, RSUB, AND, OR, XOR, SLL, SRL, SRA, S1, S2, S2S1 and MUL and DIV
when they are enabled on the con�guration form.

S1 The source of bus S1. Possible values are: (empty { no source), A, Const, PC, MAR, MDR, IR and the
extra organizational registers added on the con�guration form. All sources are organizational registers,
with the exception of Const, which is a number coded in the microinstruction, and IR, which is really a
sign extended version of the immediate coded in the current macroinstruction.

S2 The source of bus S2. Possible values are: (empty { no source), B, Const, PC, MAR, MDR, IR and the
extra organizational registers added on the con�guration form.

Dest The destination of the ALU. Possible values are: (empty { no destination), C, PC, MAR, MDR and the
extra organizational registers added on the con�guration form.

ExtIR The size to which the immediate coded in the macroinstruction should be extended. Depending on the
con�guration, the possible values are: (empty), Byte, Word and Half, or (empty) or Word. When (empty)
is selected, no extension occurs, and the output of the Sign Extender is void.

Const The constant coded in the microinstruction. The number of bits can be set on the con�guration form.
Enter the value in decimal (signed or unsigned), or in hexadecimal. In the latter case the number must
be preceded with "0x".

JCond This �eld determines which microinstruction will be executed next. The possible values are shown in
table 2.

Adr The label of the microinstruction to be executed next when the jump condition evaluates to true.

1these values are only available when the complete set is selected for the comparator on the con�guration form.

8

Value Result

(empty) uAR := uAR+1
True uAR := Adr (Adr is coded in the microinstruction)
EQ uAR := Adr when Result(ALU) = 0
NE1 uAR := Adr when Result(ALU) <> 0
LT uAR := Adr when Result(ALU) < 0
GT1 uAR := Adr when Result(ALU) > 0
LE1 uAR := Adr when Result(ALU) <= 0
GE1 uAR := Adr when Result(ALU) >= 0

MBusy uAR := Adr when the memory is busy
Jumpn uAR := Address(Jump Table n)

Table 2: jump conditions.

Mem The functionality of the memory interface. Depending on the settings on the con�guration form, the
possible values are: (empty { no operation), RW and WW or (empty), RB, RH, RW, WB, WH, WW. The
�rst character indicates read (R) or write (W), the second character indicates the width of the memory
access: byte (B), half (H) or word (W).

MAdr The source of the memory address for read or write operations. Either (empty { defaults to MAR),
MAR or PC.

MDest The destination register for memory write operations. Possible values are: (empty { defaults to IR),
MDR or IR.

Regs The functionality of the register �le. The possible values depend on the settings on the con�guration
form and are explained in table 3:

Value Function

RR Read formals into registers A and B

RAFn Read formal n into register A
RBFn Read formal n into register B
WFn Write formal n into register C
RAAn Read actual n into register A
RBAn Read actual n into register B
WAn Write actual n into register C

Table 3: register �le functionality.

There are two modes for editing the microcode: edit mode and dropdown mode. In the edit mode all �elds
have to be entered by keyboard. In the dropdown mode, a dropdown box appears as soon as you click on a
�eld with limited set of possible values (i.e. ALU, S1, S2, Dest, ExtIR, JCond, Mem, MAdr, MDest and Regs).
The dropdown mode can be enabled or disabled from the Edit menu, and is enabled by default.

Next to the default overwrite mode, there exists also an insert mode. Toggle from one to another with the
Insert key. In insert mode an empty row is inserted whenever the user hits the Enter key, and when pasting
the rows are inserted instead of being overwritten.

8.2 Jump Tables

The jump tables form is a table with the opcodes in the �rst column and destinations �elds for the jump
tables in other columns. When the JCond �eld of the current microinstruction has a value of Jumpn, the next
microinstruction to be executed is determined by the row in jump table n indexed by the opcode portion of IR.

9

8.3 Menu items

File!New File Discard all data.

File!Open File Read microcode and jump tables from a �le. Since all �les are ASCII, they can be edited
with a simple editor (such as Notepad). Because labels are used for jumps, the microcode address does not
have to be updated manually: after loading the microcode the addresses are renumbered automatically.

File!Save File Write the data to a �le. The user is prompted for a �le name when no name has been speci�ed.

File!Save File As Similar to the previous menu, but the user is always prompted for a �le name.

File!Hide Form Hides the microcode form, which can also be achieved by clicking on the window close icon.
Note that the form still exists, therefore the user is not yet prompted to save any data that may have
been modi�ed.

Edit!Cut Only enabled when editing the microcode page. After selecting one or more rows, select this menu
item to cut the rows to the clipboard.

Edit!Copy Only enabled when editing the microcode page. Select this menu item to copy rows to the
clipboard.

Edit!Paste Only enabled when editing the microcode page. Inserts or overwrites the rows cut or copied to
the clipboard.

Edit!Delete Only enabled when editing the microcode page. Deletes the selected rows.

Edit!Select All Only enabled when editing the microcode page. Selects all rows.

Edit!Copy Opcodes Only enabled when editing the jump tables page. After selecting a certain jump table
�eld and selecting this menu item, all �elds of the jump table are �lled with the opcode names as labels.
This can be useful when using a jump table for the decoding of instructions.

Edit!Fill Only enabled when editing the jump tables page. First the user is prompted for a value, then all
the selected �elds are �lled with this value.

Edit!Dropdown Mode Toggles between dropdown and edit mode.

View!Microcode Show the microcode page.

View!Jump Tables Show the jump tables page.

View!Base Set the base for viewing the Const �eld to either Unsigned Hexadecimal, Unsigned Decimal or
Signed Decimal.

Assemble!Assemble Since labels are used for jumps, an assembly routine is required to lookup all the
microcode addresses the labels refer to. The assemble routine is automatically invoked when loading or
saving the microcode, and before simulating, therefore it is never necessary to assemble manually. It can
however be useful to check for errors while writing microcode.

Help!About Shows the about box.

9 Pipelined Architecture Form

The pipelined architecture form is very similar in use to the microprogrammed architecture form. The register
�le can be scrolled with the cursor keys, the multiplexer positions are visualized by thick black lines and
registers with a gray background are disabled. Pop-up boxes to show the driver and current value of wires are
also available here. The interface (Clock, Reset and Rewind buttons, etc.) is also similar.

10

9.1 Menu items

Most menu items are identical to those of the microprogrammed architecture form. The View!Microcode

item is replaced by View!Pipeline Functionality, and a few additional menu items exist.

View!Pipeline Functionality Clicking on this item the pipeline functionality form is displayed.

View!Enable Pipeline Diagrams Click on this item to enable the pipeline diagrams. This will slow down
the simulation a little.

View!Pipeline Activity Diagram Displays the pipeline activity diagram.

View!Pipeline Usage Diagram Displays the pipeline usage diagram.

Options!Enable Forwarding Checkmark to enable forwarding. When forwarding is disabled, explicit write-
through of the register �le is still enabled, and stalls of the EX-stage will occur instead of forwarding.
Forwarding is enabled by default.

Options!Delayed Branching Use this menu item to set the delay slot size to either No Delay Slot, Single
Delay Slot or Double Delay Slot.

Options!Data Memory Access Time The default data memory access time is 3 clockcycles, but can be
set from 1 to 9 cycles.

10 Pipeline Functionality Form

This form is the counterpart of the microcode and jump tables form for the pipelined architecture. The pipeline
functionality is represented in tabular form as well. For each opcode a number of items must be speci�ed:

A Formal The formal to be read in register A during the ID stage. Possible values are: (empty { no register is
read), 1, 2 and 3. When register �le reading is set to instruction independent on the con�guration form,
register A is always loaded with formal 1.

B Formal The formal to be read in register B. When register �le reading is set to instruction independent,
register B is always loaded with formal 2.

C Formal The formal to be written during the WB stage. Possible values are: (empty { no write-back occurs),
1, 2 and 3.

S1 The source for the �rst ALU operand. The possible values are: (empty { defaults to A), A or PC1.

S2 The source for the second ALU operand. The possible values are: (empty { defaults to B), B or IR.

IR Extend The size to which the immediate coded in the macroinstruction should be extended. Depending
on the con�guration, the possible values are: (empty), Byte, Word and Half, or (empty) or Word. When
(empty) is selected, no extension occurs, and the output of the Sign Extender is void.

ALU The functionality of the ALU. Possible values are: (empty { no operation), ADD, SUB, RSUB, AND,
OR, XOR, SLL, SRL, SRA, S1, S2, S2S1 and MUL and DIV when they are enabled on the con�guration
form.

Comp The functionality of the comparator. The meaning of the possible values is explained in table 4.

2these values are only available when the complete set is selected for the comparator on the con�guration form.

11

Value Result

(empty) 0
True 1
EQ 1 when register A = 0
NE2 1 when register A <> 0
LT 1 when register A < 0
GT2 1 when register A > 0
LE2 1 when register A <= 0
GE2 1 when register A >= 0

Table 4: jump conditions.

Mem The functionality of the data memory interface. Depending on the settings on the con�guration form,
the possible values are: (empty { no operation), RW and WW or (empty), RB, RH, RW, WB, WH,
WW. The �rst character indicates read (R) or write (W), the second character indicates the width of the
memory access: byte (B), half (H) or word (W).

Similar to the microcode page there is also a dropdown and edit mode.

10.1 Menu items

File!New File Discard all data.

File!Open File Read pipeline functionality data from a �le.

File!Save File Write the data to a �le. The user is prompted for a �le name when no name has been speci�ed.

File!Save File As Similar to the previous menu, but the user is always prompted for a �le name.

File!Hide Form Hides the pipeline functionality form, which can also be achieved by clicking on the window
close icon. Note that the form still exists, therefore the user is not yet prompted to save any data that
may have been modi�ed.

Edit!Fill First the user is prompted for a value, then all the selected �elds are �lled with this value.

Edit!Dropdown Mode Toggles between dropdown and edit mode.

Help!About Shows the about box.

11 Pipeline Diagrams

There are two di�erent pipeline diagrams: the pipeline activity diagram and the pipeline usage diagram. A
pipeline activity diagram plots for each instruction the current pipeline stage versus time. A pipeline usage

diagram plots for each pipeline stage the current instruction (if any) versus time.

Each stage in the usage diagram is displayed as a colored box. The color is associated with the stage. Each
instruction in the activity diagram is displayed as a colored box as well. In this case the color is associated with
an instruction that has entered the IF stage and is kept for this instruction throughout the pipeline.

When a stage is stalled, it occurs in the pipeline diagrams as a box with a crossmarked background.

11.1 Menu Items

View!Hide Form Hides the pipeline diagram form, which can also be achieved by clicking on the window
close icon.

12

12 Instruction Memory Form

The instruction memory form displays the instruction memory (pipelined architecture) or the code portion of
the main memory (microprogrammed architecture) in assembly format. The �rst column shows the instruction
address and instruction word, the second column contains the optional labels, and the instruction in assembly
format is shown in the third column. Only the latter two are editable.

Similar to the microcode page there is also an insert and overwrite mode. Toggle from one to another with
the Insert key. In insert mode a new instruction is inserted whenever the user hits the Enter key, and when
pasting the instructions are inserted instead of being overwritten. Since instructions can be inserted or deleted,
part of the instruction memory can move up or down. To prevent the data portion of the main memory
(microprogrammed architecture) to be moved as well, the code range of the main memory can be set with the
View!Set Code Range menu item.

Immediate jump address are relative to the address of the next instruction, but a label or the absolute jump
address is used in the assembly format. When entering an address within the code range, the address is
automatically replaced by a label.

12.1 Menu Items

File!New File Discard all code.

File!Open File Read code from a �le.

File!Save File Write the code to a �le. The user is prompted for a �le name when no name has been speci�ed.

File!Save File As Similar to the previous menu, but the user is always prompted for a �le name.

File!Hide Form Hides the instruction memory form, which can also be achieved by clicking on the window
close icon. Note that the form still exists, therefore the user is not yet prompted to save any code that
may have been modi�ed.

Edit!Cut After selecting one or more instructions, select this menu item to cut the instructions to the
clipboard.

Edit!Copy Select this menu item to copy instructions to the clipboard.

Edit!Paste Inserts or overwrites the instructions cut or copied to the clipboard.

Edit!Delete Deletes the selected instructions.

Edit!Select All Selects all instructions in the code range.

View!Set Code Range Allows you to set the code range.

View!Base Set the base for viewing immediates to either Unsigned Hexadecimal, Unsigned Decimal or Signed
Decimal.

Help!About Shows the about box.

13 Data Memory Form

The data memory form displays the data memory (pipelined architecture) or the main memory (micropro-
grammed architecture). The data can be displayed in groups of 4 (word), 2 (half) or 1 byte, and in a signed
or unsigned decimal, or unsigned hexadecimal base. Change the memory content by editing the values, or by
�lling a selected memory region with a �xed value or random values.

13

13.1 Menu Items

File!New File Discard all data.

File!Open File Read data from a �le.

File!Save File Write the data to a �le. The user is prompted for a �le name when no name has been speci�ed.

File!Save File As Similar to the previous menu, but the user is always prompted for a �le name.

File!Hide Form Hides the data memory form, which can also be achieved by clicking on the window close
icon. Note that the form still exists, therefore the user is not yet prompted to save any code that may
have been modi�ed.

Edit!Select All Selects all data.

Edit!Clear Resets the content of the selected memory region to zero.

Edit!Random Fills the selected region with random values.

Edit!Fill Prompts for a value, then the selected region is �lled with this value.

View!Size Set the size for data grouping to bytes, halves or words.

View!Base Set the base to either Unsigned Hexadecimal, Unsigned Decimal or Signed Decimal.

Help!About Shows the about box.

14 Breakpoints Form

Breakpoints can be set for organizational or register �le registers. To set a breakpoint you must:

1. select an organizational register or enter the number of the register �le register

2. enter the breakpoint value

3. checkmark the little box to the left of the register name or number.

Whenever the program simulates multiple clockcycles and one of the breakpoint registers matches, the simulation
is stopped. This is useful for measuring the performance of the implementation, or simply for debugging the
assembly program or microcode.

14.1 Menu Items

View!Base Set the base for the breakpoint values to either Unsigned Hexadecimal, Unsigned Decimal or
Signed Decimal.

View!Hide Form Hides the breakpoints memory form.

Help!About Shows the about box.

14

